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COMPUTER  PROGRAM FOR CALCULATING  ISOTHERMAL, 

TURBULENT JET MIXING OF TWO GASES 

by Leo F. Donovan  and  Carroll A.  Todd 

Lewis  Research  Center 

SUMMARY 

Fluid  mechanics is perhaps the most  significant area in  the  investigation of the 
coaxial-flow,  gas-core  nuclear  reactor.  This  report  describes a computer  program  for 
solving a simplified  model of the  turbulent  mixing  that  occurs  between a central  fuel jet 
and a surrounding,  faster-moving  coaxial  stream of propellant.  As  such,  this  report 
constitutes a step  toward a better  understanding of this  aspect of the  gas-core  nuclear 
rocket.  Local  values of time-averaged  velocity  and the mass  fraction of fuel  can be 
calculated  for a reactor  in less than a minute  on  the IBM 7094. 

The von Mises  transformation  was  used  to  convert  the  axisymmetric  forms of the 
isothermal  boundary  layer  momentum  and  diffusion  equations  to  forms  amenable  to nu- 
merical  solution.  The  effects of confining  walls  were  not  considered.  The  program  can 
solve  problems  in which  the initial velocities  and  densities of the two streams  differ 
greatly, by using  expressions  for eddy  viscosity  that  vary  radially as well as axially. 

The effects of initial  coaxial-stream-  to  jet-velocity  and  density  ratios  on  velocity 
and  mass  fraction  profiles are shown. An unspecified  reference  density  occurs  in  the 
eddy  viscosity  formulation;  the  influences  on  velocity  and  mass  fraction  profiles of 
several  choices  for  the  reference  density are illustrated.  Radial  and axial variations of 
eddy  viscosity  and  the  product of density  and  eddy  viscosity are also given. Estimates 
are made of the effects of initial velocity  ratio  and  initial  density  ratio on  the mass of the 
major jet component  contained  within a given  volume.  The  maximum  and  minimum 
amounts  that  could  be  present are included for  comparison. 

INTRODUCTION 

The  concept of a coaxial-flow,  gaseous  nuclear  reactor  provides  the  motivation  for 
the  work  to be described  in  this  report. A brief  discussion of some of the  features of 
this  concept  will be helpful  in  understanding  the  relevance of turbulent jet mixing. 



An important  characteristic of rocket  performance is specific  impulse;  specific 
impulse is the  thrust  obtained  per  unit  weight  flow rate of propellant  mixture expelled 
from  the  engine. High specific  impulse is desirable  since less propellant  will  be  required 
to  produce a given  total  impulse  (i. e. , integral of thrust  over  the  operating  time of the 
reactor).  Specific  impulse is approximately  proportional  to the square  root of the  ratio 
of exhaust  temperature  to  molecular  weight;  thus,  high  temperatures  and low molecular 
weights are desirable. Chemical  rocket  performance is limited by the temperature  to 
which  the heat of combustion  will raise a given  fuel-oxidizer  combination;  for  emmple, 
advanced  hydrogen-oxygen  rockets  produce a specific  impulse of about 450 seconds.  The 
great advantage of nuclear  rockets is the high specific  impulse  that  can  be  obtained by 
using  hydrogen as the  propellant.  Solid-core  nuclear  reactors,  however,  must  operate 
at temperatures that fuel-bearing  materials  can  withstand  and ar.e thus  limited  to  specific 
impulses of about 1000 seconds. 

Higher  fuel  temperatures are possible  in  the  gas-core  nuclear  reactor  since  the  fuel 
is not  supported  on  solid  surfaces.  Rather, a slowly  moving  gaseous  fuel  mass radiates 
heat  to a coflowing annular  propellant  stream.  The  initial  ratio of propellant  to  fuel 
velocity  must be high in  order  to  keep  the  loss of fuel as low as possible.  With  such a 
reactor,  specific  impulses of 2000 to 3000 seconds  may be possible.  Use of nuclear  fuel 
and  hydrogen  propellant results in small  initial  propellant-  to  fuel-density  ratios. 

The  gas-core  nuclear  reactor  problem  was  made  more  amenable  to  solution by 
dividing it into  three  major areas (ref. 1) (viz, nuclear  aspects,  radiant  heat  transfer, 
and  fluid  mechanics).  The  goal is to  recombine  the  separate parts into a meaningful 
whole after each  relevant  process is understood.  The first two areas have  been  discussed 
in part elsewhere (refs. 2 and 3); fluid  mechanics,  including  mass  transfer,  was  con- 
sidered  in  reference 4 and is treated  in  the  present  report.  In  reference 4 molecular 
transport  coefficients  were  retained,  and eddy  viscosity  was  assumed  to be a function of 
axial position raised to  an  arbitrary power  which was  determined by comparison with 
data  from a bromine-air  experiment. 

In the  present  analysis a modified  Prandtl  eddy  viscosity  was  used  along  with  the  fact 
that  in  turbulent jet mixing  the  molecular  transport  coefficients a r e  negligible  compared 
with the turbulent  transport  coefficients.  The  equations  governing  the  mixing are the  con- 
tinuity  equation,  the  momentum  equation,  and  the  diffusion  equation.  Boundary  layer as- 
sumptions  were  used  to  simplify  these  equations. A sketch of the  model  analyzed is shown 
in  figure 1. The  problem at hand differs  from  what  has  been  solved  before  in  that a large 
initial  coaxial-stream-  to  jet-velocity  ratio is coupled  with a small  coaxial-stream-  to 
jet-density  ratio, so  that  an  appropriate  formulation of the  eddy  viscosity is not known. 

The  problem  was  simplified  for  this  report by eliminating  the  effect of confining 
walls  and  considering a free jet. Most of the  work  in jet mixing  has  been done on f ree  
jets, and the results  (ref. 5) of these  experiments  and  analyses  can be used as a basis 
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for  estimating  eddy  viscosity.  Prandtl's  postulate  that eddy  viscosity is proportional  to 
the  product of half radius  and  maximum  velocity  difference  has  been  shown  to  agree  with 
data in  the far jet region,  when  density is constant  and  the initial coaxial-stream-  to 
jet-velocity  ratio is small.  However,  there is little agreement on how this  postulate 
should  be  modified  when  density  varies.  Ting  and  Libby  (ref. 6) have  extended this 
formulation  to  allow  for  density  differences,  but  adequate  experimental  verification  has 
not  been  obtained. 

This  report  describes a computer  program  that  has  been  developed  for  isothermal, 
turbulent  jet  mixing of two gases.  The  program is capable of solving  problems  with 
large  initial  velocity  and  density  ratios  without  the  restrictive  assumption of constant 
eddy  viscosity.  The  effects of velocity  and  density  ratios  on  the  mean  flow  properties 
are shown;  also,  the  marked  influences of the  reference  density,  unspecified  in  the 
Ting-Libby  formulation, are illustrated. 

ANALYSIS 

Boundary Layer Equations, Initial and  Boundary  Conditions 

The  equations  that are  used  to  describe the isothermal,  turbulent jet mixing of two 
gases are the  time-averaged  continuity  equation  and  boundary  layer  forms of the  momen- 
tum and  diffusion  equations.  The von Mises  transformation  converts  the  momentum  and 
diffusion  equations  to  forms that satisfy the  continuity  equation  identically. Eddy 
viscosity is specified  empirically by a combination of Prandtl's  constant  density  formu- 
lation  and a relation  proposed  by  Ting  and  Libby  (ref. 6). 

For jet  mixing at large  Reynolds  number,  molecular  transport is negligible  com- 
pared with  turbulent  transport  and  can  be  ignored.  At low Mach  number,  density  changes 
result  solely  from  mixing,  and  for a free jet the  pressure is constant.  Using  capital 
letters to denote  dimensional  quantities,  the  axisymmetric  forms of the  continuity, 
momentum,  and  diffusion  equations are as follows  (ref. 5): 

- (PUR) + - (PVR) = 0 a a 
ax aR 

ax aR R aR \ aR) 
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(Symbols are defined in  appendix A.)  The diffusion  equation is written  in  terms of the 
mass  fraction of component 1, the major (or total) constituent of the initial jet. It is 
assumed that the turbulent  momentum  and  mass fluxes can be represented as the product 
of an eddy  viscosity  and  the  gradient of a time-averaged  quantity. In addition,  the 
turbulent  Schmidt  number  Sct is used to relate the eddy  viscosities  for  momentum 
and  mass. 

The  initial  and  boundary  conditions  for the problem are as follows: 

u = u . ,  Y = Y .   O s R < R j  
J J 

u = u e ,  Y = Y e  R > Rj x=o 

These  conditions  may  have  to  be  modified  when  comparing  computer  results  and  experi- 
mental data. If the wall thickness of the jet discharge  tube is not  small  compared with 
the tube diameter, the presence of a wall  may  significantly  influence  the  early  develop- 
ment of the  flow. Also, the jet and  coaxial-stream  velocities  will not,  in  general, be 
uniform  but  will  have  some  distribution. If the duct  surrounding the coaxial  stream is 
not large compared  with  the jet discharge  tube,  the  assumption of a coaxial  stream of 
infinite  extent is not  justified. 

The  equations  can be made  dimensionless  in  terms of the  initial jet velocity,  mass 
fraction,  density,  and  radius. When lower-case letters are used  to  denote  dimensionless 
quantities,  the  equations  become 

- J (pur) + - a (pvr) = 0 
ax ar 

ax ar r ar 
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where 

PE = PE 
P.U.R 

J J ~  

The  dimensionless initial and  boundary  conditions are as follows: 

u = l ,   y = l  O ~ r < l  

u=ue9  Y = Y e  r > l  x = o  

The  density  and  mass  fraction of component 1 can  be  related by the  ideal gas law. 
Thus, 

1 m2 - 1 + -  
M Yj p = -=  (14) 

Mj (m2 - 1) y + - 1 

yj  

where  m2 = M2/M1. For  most  applications,  the initial jet will  be  pure  component 1, 
and  the  initial  coaxial  stream  will  be  pure  component 2. Then, pe = m2  and  the  mole 
fraction of component 1 is 

A "compatibility  condition" that must  be  satisfied by  the  numerical  solution  can be 
obtained  by  evaluating  the  momentum  equation at the  centerline;  this  condition  provides 
a check  on  mesh size. Thus, when  1'Hospital's rule is used  to  evaluate  the  indeterminate 
form  that arises, 
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von  Mises  Transformation 

The  numerical  integration  can be facilitated by using  the  von  Mises  transformation 
(ref. 7, p. 136) to  convert  from  (r,x) to (Q, x) coordinates,  in which  the  continuity  equa- 
tion is satisfied  identically.  Defining a stream  function + such that 

" 'Q- pur 
ar 

a+ - 
ax 
" - PW 

and  using  the  chain  rule  for  differentiatic 

a 
ar 
- 

3n 

X 

results in  the  following  forms of the  momentum  and  diffusion  equations: 

In these  coordinates  the  initial  and  boundary  conditions are as follows: 

6 



u = l ,   y = l  

u = u e ,  Y = Y e  

u = u e ,  Y = Y e  

O S Q < Q j  

Q > Q j  x = o  x = o  I 
Q = O  x 2 0  

Q-00 x 2 0  

The  transformation  obtained by integrating the f i r s t  of equations (17) 

Q =  6' pur d r  

can be  used  to  determine Q. 

Eddy Viscosity 

It remains  to  specify  the  eddy  viscosity. Two formulations are required: one for 
the  "near" jet, before  the  centerline  velocity  begins  to  change,  where  the  mixing is 
more  nearly  planar;  and  the  other  for  the "far" jet, where  the  mixing is truly  axisym- 
metric. No attempt  was  made  to  make  the eddy  viscosity  continuous at the  point  where 
one  formulation  replaces  the  other. 

Ting  and Libby (ref. 6) have  postulated  relations  between  the  eddy  viscosities in 
constant-density  and  variable-density  flows.  These  relations  can  be  written as 

2 .=(>) E* 

for the near  jet  and 

for  the far  jet .   The  asterisk refers to  constant-density  flows  and po is a reference 
density for the  flow.  Since  the  reference  density is not  specified, it must  be  determined 
by comparison of calculation  and  experiment.  The  value  for  the  centerline  eddy  viscosity 
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can  be  obtained by expanding p in a Taylor series in r about r = 0, performing  the 
integration,  and  taking  the  limit as r - 0. In this way 

The  constant-density eddy viscosity  can  be  represented by the  following  equations 
(ref. 7) in the  near  and far jets, respectively, 

E* = k X(U - 1) l e  (29) 

and 

E* = k2rlI2(ue - 4 

For a jet discharging  into a quiescent  ambient  stream,  k2 was found experimentally  to 
be  0.0256  (ref. 7). In terms of these  expressions  for  eddy  viscosity,  the  centerline 
compatibility  conditions  for  the  near  and far jets, respectively,  become 

2 
a u  2 

ug - dx = 2k1(:) (ue - 1) - 
ar 2 + 

and 

The  unspecified  reference  density is presumably  the  centerline  density, the coaxial- 
stream  density,  or a combination of these. It was assumed that a simple  linear  combina- 
tion was adequate.  The  reference  density was thus  taken  to  be 

Po = APg + BPe (33) 

where A and B are positive  input  constants.  Restricting  the sum of A and B to 1 
bounds po between pg and  pe. 
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Calculations 

In addition  to  the  velocity,  mass  fraction,  and  mole  fraction  variations,  several 
other  quantities are of interest.  The  turbulent momentum  and mass  fluxes are 

The  width of the jet is characterized by its half radius (i. e . ,  the  point at which the  local 
velocity  equals  the  average of the  centerline  and  coaxial-stream  velocities). 

A gross  measure of concentration  that  can  be  easily  obtained  experimentally is the 
amount of light  attenuated by an opaque  substance.  The  attenuation  can  be  related  to 
concentration if the  optical  properties of the  components are known. This  technique was 
used  in  reference 8 with a bromine jet and a coaxial  stream of air. This  measure of 
concentration  can  be  calculated as follows: 

Gas-Core  Nuclear  Reactor  Calculations 

For these  calculations, it was assumed  that  the  fuel  instantly  vaporizes upon enter- 
ing  the  reactor.  Heat-transfer  calculations (ref. 3) were used  to  estimate  average  fuel 
and  propellant  temperatures so that  molecular  weights  and  densities  could  be  calculated. 

The  major  fluid-mechanical  figure of merit  for  the  gas-core  nuclear  reactor is 
the  amount of fuel  contained  within a given  volume 

w = 2nP.Y.R. I 3 
J J J  

where 
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The  calculations  were  performed  for a coaxial stream  infinite in extent,  whereas in a 
gaseous  nuclear  rocket the coaxial  stream is, of course, bounded.  Indeed, it is now 
thought that  the  reactor  radius  will be only  about  twice the radius of the jet discharge 
tube. However, the radial integration  in  equation (38) was terminated at the position 
corresponding  to a reactor wall in order  to  estimate  the  fuel  content.  Since the radial 
velocity at this  position is not  zero  in  the  calculations,  the  situation  to which the calcu- 
lations  apply  corresponds to a porous-wall  reactor  with  this  distribution of radial 
velocity at the wall.  Alternatively, if the  integration is carried out  to a constant 1,5 
value  corresponding  to  the  initial  reactor  radius, axial mass flow is constant but the 
reactor walls are no longer  cylindrical.  The two additional  limitations in applying the 
results of the  calculations  to  gaseous  nuclear  reactor  geometry are the use of the 
boundary  layer  equations  close  to  the jet exit and the absence of an end wall in the cal- 
culations.  Thus, the results of the calculations are approximations  to  reactor  condi- 
tions. 

The  amount of fuel  present  in a given  volume  can be compared  with the minimum 
and  maximum  amounts that could  be  present.  Fuel  content would be a minimum if the 
jet and the coaxial  stream  were  perfectly  mixed  before  injection  into  the  reactor. 
Thus, 

If the jet and the coaxial  stream are composed of pure  component 1 and  pure  component 
2, respectively, 

so that 

Then, 
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The  amount of fuel would be a maximum if the initial jet were to remain a cylinder of 
uniform  concentration  with the same  radius as the jet  discharge tube. In this case 

Numerical Method 

In this  section, a detailed  analysis is presented of the numerical  techniques  used  to 
solve  the  equations of coaxial turbulent jet mixing.  Figure 2 is a general  flow  diagram 
for  the  numerical  solution.  The  initial  difficulty,  from a numerical  standpoint, is the 
application of the  boundary  conditions  u = ue and  y = y as + - 03. This  difficulty  was 
overcome by  defining a parameter q03, such that as + - qm not  only do  the  functions 
approach  the  boundary  conditions,  but  also  the  derivatives of the  functions are restricted 
to fall below some  arbitrarily  small  parameter.  Furthermore,  since G03 can be a 
numerically  large  value, a transformation  was  performed on the independent  variable I) 

to  limit  the  range of integration  from 0 to 1. An implicit  finite-difference  technique, 
the  Crank-Nicholson  method  (ref. 9), was employed  to  solve  the  system of parabolic 
equations.  Stability is inherent  in  such a scheme,  and a high degree of accuracy  can  be 
obtained by a judicious  choice of interval  size. 
Let 

e 

so that 

Applying this linear transformation  to  equations (20), (Zl), and the inverse of (25) results 
in the  following  equations: 
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Correspondingly,  the  initial  conditions  become 

u = l  

u = u  e 

y = l  

Y = Ye 

The  boundary  conditions are transformed  to 

- 1  o- J 
2*Ca 

u=ue ,  y=ye Q = 1 
- 

Finite-Difference  Equations 

Consider a linear  parabolic  equation of the  form 
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Equations (47) and (48) can  be  considered of this  form if 

and 

and if the  values c If the  quantities  in  equations (55) and A (56) are initially  assumed to be 
those at the  previous axial position. By successively  solving  equation (54) and  recomput- 
ing  AU  and  A  until no further  change  occurs,  the  correct  values are obtained. 

represent  discrete  points on the  C/-coordinate,  and j discrete  points on the x- 
coordinate.  The  points of the  $-coordinate are constructed  such  that qi = (i - 1 ) A q  
with i ranging  from 1 to N. Thus,  the  notation u. corresponds  to  the  functional 
value of uGi ,  x.). If forward  differentiating is used  over  intervals  in  the x direction, 
then  equation (54) can  be  integrated  between  mesh  points  to  yield 

Y 
Now consider a net R. constructed on the  region of interest.  Let  the  subscript i 

1, j 

1, j 
J 

1 i+- 

(5 7) 
2 

If the  integrand  in  equation (57) remains  constant  over the small  interval A K  

Ax 

2 2  
" 

Central  differences  are  used  for the right  side of equation (58); values of A and  u at 
half intervals are approximated by the  average  over  the whole interval;  and  the  abbrevia- 
tions 
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are introduced.  Substituting these results  in  equation (58) yields 

- - "W i u i -1 , j  -(g - WE - w;)uiy - WiUi+1, + (60) 
Ax 

Equation (60) describes a linear set of equations  for  the unknowns ui, j+l. Two 
additional  equations are needed  to  complete the set in which i ranges  from 1 to N. 
Integrating  equation (54) from i = 1 to i = 1- and  using  the  fact that (du/dF)F=o = 0 
gives 

1 
2 

Following  the  same  procedure  used  to  obtain  equation  (60),  equation (61) can  be  ex- 
pressed as follows: 

- ( w l + -  + z)ui,j+l + w; u2, j+l = - 

Applying  the  boundary  condition at 7 = 1 (i. e. , i = N) by  using  equation (60) with i = N 
and  noting that u ~ + ~ ,  j+l = yields ue 

The  relations  given by equations (60), (62), and (63) are written  in  matrix  notation as 
follows: 

g u j + l  = d 

where the vectors  uj+l are the unknown quantities.  The  vector d has the following 
elements: 

-c 
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di = - w;ui-1, -i"" - Wf - +, - wiui+l, + i =  2, 3, ..., N-1 
Ax 

d N = 2 w  u - W-u + N e N N-1,j - ( s - w N - w $ u N , j  + 

J 

The  tridiagonal  matrix - B, whose  superdiagonal  and  subdiagonal  elements are w i  and 
wi, respectively, has the  following  diagonal  elements: - 

bll = 

bm=  - (W&+W.+&)  Ax 

J 

The  solution of equation (64) is directly  obtained by Gaussian  elimination of the  subdiag- 
onal  elements  and a back  substitution  to  obtain <+l. 

cedure  for  solving  equations (48) and (49) is as follows: 
Now that a method  to  solve  equation (54) has  been  devised, the calculational  pro- 

(1) Initially, at an axial length x. use  values of r, p,  u, and y from xjml to 

(2) Solve for  uj+l and Yj+l. 
(3) Recompute  the  coefficients A, and A 
(4) Iterate between  steps 2  and 3 until  the  change  in A, and A is less than a 

This  procedure  was  programmed  for  the IBM 7094 II 7044 Direct  Couple  System  in 

1' 
compute A, and A 

Y' 

Y' 
Y 

specified  amount. 

FORTRAN Tv. A listing of the  program is given in  appendix B. For  most cases con- 
sidered, a value of A T  = 1/200 and  an initial Ax = gave satisfactory  results. 
However, at larger axial positions,  larger  values of Ax can  be  used  because of the 
decaying  effects of the initial step profiles. An heuristic  approach was used  to alter Ax; 
if the  iteration  procedure  converged  in  three  or less iterations, Ax was  increased by 
0.5 percent  but  was  limited  to a value of 0.4.  Running time, of course,  varied  with 
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initial input;  however,  an  average  time of approximately 0.3 minute per unit x could be 
expected. 

Program Input and Output 

The  input  required  for a calculation  consists of the  following  information: 
The  initial  ratio of coaxial-stream  velocity  to jet velocity ue 
The  mass  fraction of component 1 in  the  initial jet y.  and  in the initial coaxial 

J 
st ream ye 

The  ratio of the molecular  weight of component 2 to the molecular  weight of com- 
ponent 1 m2 

The  constants  in  the eddy  viscosity  formulation kl and k2 
The  turbulent  Schmidt  number  Sct 
The  ratio of reactor  diameter  to jet radius  d 
The  constants  in  the  reference  density  formulation A and B 
The axial positions at which  output is desired x 

The  output  listing  reproduces  the  input  and,  thereafter, at each axial position,  gives 
(1) Axial position x 
(2) Eddy viscosity E 

(3) The  product of density  and  eddy  viscosity P E  

(4) The  following  information  for axial velocity,  mass  fraction,  and  mole  fraction: 
(Centerline  value - Coaxial-stream  value)/(l - Coaxial-stream  value) 

The  radial  variations  with  stream  function,  also  converted  to radial position r, and  the 
ratio of radial  position  to half radius r/r for axial velocity,  mass  fraction,  and 
mole  fraction are provided  in  the  following  form: 

1 /2 

(Local  value - Ambient  stream  value) 
(Centerline  value - Ambient  stream  value) 

The  following  quantities are  also  l isted: 
(1) Momentum f lux  normalized with  the  square of the centerline  velocity T/U+ 

2 

(2) Mass f lux  normalized with  the  product of centerline  velocity  and  mass  fraction 
P/U+Y+ 

(3) Eddy  viscosity  and the product of density  and  eddy  viscosity  divided by their 
centerline  values € / E +  and P E / ( ~ E ) +  

Both sides of the  centerline  compatibility  condition are printed  next,  followed  by  the 
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values of velocity  and  density at the  largest  stream  function  position  in  the  calculation. 
Finally,  the  "line of sight''  concentration c*, the  dimensionless  mass of component 1 I, 
and  the  ratio of mass  of component 1 to initial mass (@ ratio) are listed. 

RESULTS AND  DISCUSSION 

Sample  results  from  the  computer  program are presented  to illustrate the  mixing of 
a heavy,  slow-moving jet and a lighter,  faster-moving  coaxial  stream. First, however, 
a limiting case is discussed. 

Schlichting  (ref. 7, p. 607) presents a similarity  solution  for  an  isothermal, tur- 
bulent free jet mixing  with a quiescent  ambient  stream of the  same  composition that is 
valid far downstream.  Schlichting's  value  for the proportionality  constant  k2 in the 
far-jet eddy  viscosity  formulation  was  adopted in order that the  numerical  solution repre- 
sent  this  limiting case. The value of the  constant of proportionality  kl  in  the  near-jet 
eddy  viscosity  formulation  was  chosen so that  the  numerical  solution  agreed  with the 
similarity  solution far downstream. 

Figure 3(a)  shows a comparison of centerline  velocity  and half radius  calculated 
from  the  similarity  solution  and  the  results of the  numerical  solution  using two different 
values of kl. A  value of kl  = 0. 75X10m3 leads  to good agreement  downstream  and  was 
therefore  used  in  subsequent  calculations.  Radial  velocity  profiles  rapidly  change  from 
the initial  step  profile  and  gradually  merge into  the  similarity  profile.  Figure 3(b) 
illustrates  that at a n  axial position of 16 jet radii  the  profile is almost  similar,  whereas 
at 50 jet  radii the agreement is essentially  exact.  In  these  and  subsequent  calculations, 
the  near jet formulation  for  eddy  viscosity  was  used  until (u$ - ue)/(l - ue) = 0.99; 
thereafter  the far jet formulation  was  used.  The  calculation was  repeated  for 0.98 in 
order  to  see  whether  the  particular  choice of 0.99 was  critical. Although there  was 
some  difference  initially,  the  difference  between  the two solutions  was  soon  indistin- 
guishable. 

Choosing  the  proportionality  constants  in  the  eddy  viscosity  formulations  by  the 
method  just  discussed  leads  to a discontinuity  in  eddy  viscosity at the axial position 
where one formulation  replaces the other. It was felt that  agreement  with  the  similarity 
solution  was  more  important  than a continuous  variation of eddy  viscosity.  Figures 4 
and 5 show  typical  calculations of the axial and  radial  variations of eddy  viscosity  and 
the  product of density  and  eddy  viscosity,  respectively. In both cases,  the radial 
variation is much greater in the near jet than farther  downstream.  The  product of 
density  and eddy viscosity varies less in  the  radial  direction  than  does  eddy  viscosity. 

profiles are illustrated in figures 6 and 7. The  higher  velocity  ratio, of course, re- 
The  effects of two different  initial  velocity  ratios  on  velocity  and  mass  fraction 
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s u l k  in a more  rapid  decay  in  centerline  values  and a narrower jet. In all calculations, 
the  generally  accepted  value of 0.7 (ref. 5, p. 422) was  used  for  the  turbulent  Schmidt 
number. 

The effects of two different initial density  ratios on  velocity  and  mass  fraction  pro- 
files are illustrated in figures 8 and 9. As expected,  the  lighter jet decays faster and 
results  in a narrower jet. 

The  influence of reference  density on  velocity  and mass  fraction  profiles are shown 
in figures  10  and 11. The  formulation  based  on  centerline  density  leads  to  much  more 
rapid  decay of centerline  values  and  to a narrower jet than  does  the  formulation  based  on 
ambient  stream  density.  The  formulation  based  equally on centerline  and  ambient 
stream  densities falls between  these  results.  These  figures  demonstrate that it will  be 
necessary  to  determine  experimentally if any of these  formulations are adequate. 

Figures 12 and  13  show  the  effect of initial velocity  ratio  and  initial  density  ratio 
on  the  mass of the  major jet component  contained  within a given  volume.  The  maximum 
and  minimum  values are included  for  comparison. 

CONCLUDING REMARKS 

A computer  program  to  describe  isothermal,  turbulent jet mixing of two gases  was 
written  using  the  axisymmetric  forms of the boundary  layer  momentum  and  diffusion 
equations.  The coaxial stream is considered  to be infinite  in  extent. Eddy viscosity is 
represented by an  expression  that  provides  for both radial and  axial  variation.  Typical 
running  time is less than 1 minute  to  produce  time-averaged  velocity  and  mass  fraction 
distributions. 

Experimental  data are required  for  further  progress.  Constantdensity  experiments 
at large  initial  velocity  ratios will  determine if the  numerical  value of k2 used is 
appropriate. If not,  the  large  initial  velocity  ratio data can  be  used  to  determine a new 
value.  The  value of kl  can  also  be  obtained  from  the  same  experiments.  With  the 
values of kl  and  k2  determined,  variable-density  experiments  at  large  velocity  ratios 
can  be  used  to  determine a suitable  reference  density  in  the eddy viscosity  formulations. 

In  the  comparison of computer  results  and  experimental  jet-mixing data, the  initial 
conditions on the  equations  may  have  to  be  modified  to  account  for  the  finite wall thick- 
ness of the jet discharge  tube  and  for  the  distribution of velocities  in  the  initial jet and. 
the coaxial  stream. For gas-core  nuclear  reactor  calculations,  the  absence of an  end- 
wall  boundary  condition is probably a serious  restriction. In addition, the assumption of 
constant  pressure  and  the  use of the  boundary  layer  equations  near the jet exit are 
approximations.  These  restrictions  can be  removed by using  the  full  Navier-Stokes 
equations  rather  than  the  boundary  layer  equations.  However,  the  problem of turbulence 
and a method  to  characterize  an eddy viscosity  remain. 
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For unbounded turbulent jet mixing,  the  computer  program  provides a rapid  solution 
that reduces  to  the  similarity  solution when  the density is constant  and  the  coaxial 
s t ream is quiescent.  Improved  values  for  the  proportionality  constants in the  eddy 
viscosity  formulations, or  an  entirely new expression,  can  easily be incorporated. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, September 8, 1967, 
122-28-02-16-22. 
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APPENDIX A 

S YM BOLS 

A, B 

*y 
B 

b 

C 

- 

C 

C* 

D 

d 

constants in reference  density  formula 

quantities  defined by eqs. (55) and (56) 

coefficient  matrix 

elements of - B matrix 

mole  fraction of component 1 

dimensionless  mole  fraction of component 1, C/C 

line of sight  concentration 

reactor  diameter 

dimensionless  reactor  diameter,  D/R.;elements of d' vector 

j 

3 
4 

d  vector  defined by eqs. (65) 

I dimensionless mass of component 1, f L d I 2 p y r  dr dx 

klk2 constants  in  eddy  viscosity  formulations 

L 

L 

M 

m 

N 

R 

r 

1/2 

U 

U 

-c 
U 

V 

reactor  length 

dimensionless  reactor  length, L/R 

molecular  weight 

dimensionless  molecular  weight, M/Ml 

upper  limit of i 

radial  position;  finite  difference  net 

dimensionless  radial  position, R/R 

dimensionless half radius (i. e. , position at which (u - 
turbulent  Schmidt  number 

axial velocity 

dimensionless axial velocity, U/U. 
J 

velocity  vector 

radial  velocity 

j 

j 
ue)/(l - ue) = 1/2) 
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B / . i  \ 

V dimensionless radial velocity, V/U. 

W amount of fuel  contained  within a given  volume, 2sP.Y.R. I 

W abbreviation  defined  by  eq. (59) 

X axial position 

X dimensionless axial position, X/R j 
Y mass  fraction of component 1 

Y dimensionless  mass  fraction of component 1, Y/Y- 

E eddy viscosity 
E dimensionless  eddy  viscosity, E/U.R. 

3 
I' 

3 
3 3 3  

J 

3 3  
E* dimensionless  constant-density  eddy  viscosity 

P density 

P dimensionless  density, P/P j + stream  function 

T normalized  stream  function, +/qm 

+a3 maximum  value of \c/ 
Subscripts: 

av  average 

4i centerline 

e coaxial  stream 

i point  on 7 coordinate 

j jet; point on x coordinate  for  numerical  solution 

max  maximum 

min  minimum 

0 reference 

1 major  component of jet 

2 major  component of coaxial  stream 
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APPENDIX B 

PROGRAM  LISTING 

B I D   Y E D 1 5 8 1  C   A   T O D D   C O A X I A L  FLOW 
C 
C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

SYMBOL 

A U  
A P  

B P  
B U  
OPS I 
DX 
E A  
E B  
E P S  
I 
I H A L F  
I T E R  

K 
J 

K GO 

NCOPY 
N P T S  
N P T S X  
NORPIPO 
NORMPZ 
NORMUO 
NORMUZ 
PMAX 
PMAXOD 
P S I  
P S I M O  
P S I M l  
P T S  
P T S X  
P Z E R O  
R H A L F O  
RHO€ 
RHOR 
R H O 0  
R H O 1  
R H 0 2  
RO 
R 1  
R 2  
sc 
SD 
SM2 
SUM 
SUM I 
T O L  
U E  
uo 

u1 
UM 

u2 
X I  
x 0  
x 1  

A COMPUTER PRIJGRAM FOR CALCULATING ISOTHERMAL 
T U R B U L E N T   J E T   M I X I N G   O F  TWO G A S E S  

D E F I N I T I O N  

T H E  A  COEFF.  FOR T H E  MOMENTUM EON. 
T H E  A  COEFF.  FOR THE D I F F U S I O N  EON. 

T H E  B  COEFF. FOR THE D I F F U S I O N   E Q N  
T H E  B  COEFF.  FOR THE MOMENTUM EON. 

T H E  I N T E R V A L  S I Z E  I N  T H E   X   D I R E C T I O N  
T H E  I N T E R V A L  S I Z E  I N  T H E   P S I   D I R E C T I O N  

COEFF.  8 1  FOR R E F E R E N C E  D E N S I T Y  C A L C U L A T I O N  
COEFF. AI FOR R E F E R E N C E  D E N S I T Y  C A L C U L A T I O N  

R H O   T I M E S   T H E   E D D Y   V I S C O S I T Y  
I N D E X   V A R I A B L E  

T H E   I T E R A T I O N   C O U N T E R  
V A L U E   O F  I WHEN R = R - 1 / 2  

I N D E X   V A R I A B L E  
A  COUNTER  TO  CONTROL  THE  OUTPUT 
A   L O G I C A L   V A R I A B L E   T O   C O N T R O L   T H E   C A L C U L A T I O N   O F   T H E  
C O N T A I N M E N T   F A C T O R  

T H E   N U M B E R   O F   P O I N T S  I N  T H E   P S I   D I R E C T I O N  
THE  NUMBERS  OF  COPIES  WANTED--   NORMALLY 1 

T H E   E U C L I D I A N  NORM OF RHO  AT X-OX 
THE  NUMBER OF X   V A L U E S   T O   B E   O U T P U T E D  

T H E   E U C L I D I A N  NORM  OF  RHO A T   X  
T H E   E U C L I D I A N   N O R M   O F  U A T  X-DX 

P S I - I N F I N I T Y   A T  X 
T H E   E U C L I D I A N   N O R M   O F  U AT  X  

T H E   I N D E P E N D E N T   V A R I A B L E  
P S I - I N F I N I T Y   A T  X-DX 

P S I - 1 / 2   A T  X-DX 
P S I - 1 / 2   A T   X  
T H E   N U M B E R   O F   I N T E R V A L S  I N  T H E   P S I   D I R E C T I O N  
THE  NUMBER  OF  OUTPUT  X 'S  
T H E   P S I - R A T I O  
R-1 /2   AT  X-DX 
T H E   E D G E   D E N S I T Y  
R E F E R E N C E   D E N S I T Y  
VALUE  OF  RHO  AT X-DX 
A   GUESSED  VALUE OF RHO A T   X  

V A L U E   O F   R  A T  X-DX 
A  COMPUTED VALUE  OF  RHO  AT   X  

A   GUESSED  VALUE  OF  R   AT   X  
A   C O M P U T E 0   V A L U E   O F   R   A T   X  
T H E   T U R B U L E N T   S C H M I D T   N U M B E R  
A   D I A M E T E R  
A   M O L E C U L A R   W E I G H T   R A T I O  
TEMPORARY  STORAGE 
TEMPORARY  STORAGE 
T H E   T O L E R A N C E   T O   T E R M I N A T E   T H E   I T E R A T I O N  
T H E   E D G E   V E L O C I T Y  
U  AT X-DX 
I N T E R P O L A T E D  U AT  X-DX 
A   GUESSED  VALUE  OF U A T  X 

T H E   C O N T A I N M E N T   F A C T O R  
A  COMPUTED  VALUE OF U AT  X  

THE  CURRENT  VALUE  OF  X  
T H E   P R E V I O U S   V A L U E   O F   T H E   I N D E P E N D E N T   V A R I A B L E ,   X  
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J 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

X K 1   A  T U R B U L E N C E   F A C T O R   F O R   E D D Y   V I S C O S I T Y  I N  THE  NEAR  JET  
X K 2   A  T U R B U L E N C E   F A C T O R   F O R   E D D Y   V I S C O S I T Y  I N  T H E   F A R   J E T  
XM A C O N T R O L   V A R I A B L E  

XM=O. N O R M A L   I N P U T  
XM=1.  NORMAL I N P U T   P L U S   R E S T A R T   D U M P   C A R D S  

XPCH  VALUES  OF  X   TO  BE  OUTPUTED 

Y J  
YE 

T H E   J E T   V A L U E  O f  Y 
THE  EDGE  VALUE  OF  Y  

YM I N T E R P O L A T E D   Y   A T  X-DX 
YO 
Y 1  

V A L U E   O F   Y   A T  X-DX 

Y2   COMPUTED  Y   AT   X  
GUESSED  Y  AT  X  

I N P U T  

U E  
CARD  l - - - -FDRMAT  8FlO.X 
Y J   Y E   S M 2  XK 1 X K 2  

P T S   P T S X   P M A X  SD E A   E B  
C A R 0  2----FORMAT  8FlO.X 

CARD  3+-- -FORMAT  8F10.X 
X P C H ( 1 1   X P C H ( 2 1  --- E T C  -" 

sc TOL 

XM NCOPY 

X P C H ( B 1  

1 R E A D ( ~ T ~ O O ) U E T Y J T Y E T S M ~ T X K ~ T X K ~ T S C T T O L T P T S T P T S X  t P M A X  T S D  T E A T E B  
1 t X M v T I B  

N C O P Y = T I B  
M=XM 
PMAXOD=PMAX 
N P T S = P T S + l .  
N P T S X = P T S X  
T=SM2-1. 
RHOE=(YJ*T+l.)/IYE*T+l.) 
D P S I = l . / P T S  
K = l  
R E A D ( ~ T ~ ~ ~ ) ( X P C H ( I ) T ~ = ~ T N P T S X )  
XI=O.  
DO 32 I = l r N C D P Y  

3 2   C A L L   I N I T A L ( M )  
K G D = 1  
IF(SMZ.GT.1.)  KGO=2 

IF(M.NE.0)  GO TO 100 

J= I  

\ 4 R I T E ( 6 ~ 4 7 1 )  SD ~ E A T E B  

DO 9969 I = l ? N P T S  

9970 P Z E R O = P S I ( J l  
9969 I F ( R O ( I l . G E . S D / Z . l  GO T O  9970 
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I F ( J . E Q . N P T S )  PZERO=PZERO+RHI lE*UE/2 . * (SD**2 /4 . -RO(NPTS)**Z)  
l / P M A X  

471 F O R M A T ( 2 H K D , G 1 3 . 5 ~ 2 X l l H A 1 G 1 3 . 5 1 2 X l l H B 1 G 1 3 . 5  1 
400 F O R M A T ( 8 F 1 0 . 7 )  
100 NORMPl=NORMPO 

NORMUl=NORMUO 
PMAX=PMAXOD 

S E T   F I R S T   G U E S S  O F ( X + D X ) = U ( X ) , Y ( X + D X ) = Y ( X ) , A N D  R ( X + D X ) = R ( X )  

00 10 I = l ? N P T S  
R H O l ( I ) = R H O D ( I )  
U 1 (  I ) = l J O (  I )  
Y l . (  I ) = Y O (  I) 

10 R l ( I ) = R O ( I )  
X l = X O + D X  

N P T S l = N P T S  
I TER=O 

I F  P S I - M A X   H A S   C H A N G E D   I N T E R P O L A T E   V E C T O R S   T O   C O R R E S P O N D  
T O  NEW LENGTH. 

101 

102 

103 

104 
C 
C 

50 

90 

1 2  

14 
490 

49 1 

C 
C 

DO 102 I = l r N P T S  
Y M ( I ) = Y O ( I )  
U M ( I ) = U O I I )  
IF(PMAX.EO.PMAXOD)  GO  TO 50 
DU 103 I = l , N P T S  
V l ( I ) = P S I ( I ) * P M A X  
V ( I ) = P S I ( I ) * P M A X O D  
DO 104 I = l y N P T S  
C A L L  S I N T P ( V ~ U O T N P T S T V ~ ( I ) ~ U M ( I ) )  
C A L L  SINTP(VvYO*NPTStVl(I)tYM(I)) 

C O M P U T E   P S I - M A X   A N D   P S I - 1 / 2   A N D   R H O - E P S I L O N  

T E S T = ( U l ( l ) - U E ) / ( l . - U E )  
R H O R = E A * R H O l ( l ) + E B * R H O E  
IF(TEST.LE. .99)GO  TO 1 2  
R H O E l = X K l = X 1 9 A B S ( U E - l . )  
I H A L F = O  
DO 90 I = l . N P T S  

G O   T O  6 1  
E P S (  I ) = ( R H O R / R H O l (  I) ) " * Z * R H O E l  

T E S T = . 5 * ( U E + U l ( l ) )  
IF(I IE.GT.1.)   GO  TO 490 

J H A L F = I  
I F ( U l ( I ) . G E . T E S T )  GO T U  14 
GO T O  1 5  
CUNT I N U E  
DO 491 I = l , N P T S  
I H A L F = I  
I F ( U l ( I ) , L E . T E S T )  GO TO 491 

C O N T I N U E  
IXl T O   1 5  

DO 14 I = l r N P T S  

C C O M P U T E   V A L U E S   O F   A U T A P , B U , A N D   B P   A N D   S O L V E   F O R   N E X l  
C A P P R O X I M A T I O N   O F   I J , Y T R H O ~ A N D  R. 
l, 

1 5  DO 456 I Z l r I H A L F  
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456 V ( I ) = P M A X / U l ( I )  
C A L L   F N T G R L ( I H A L F T D P S I T V T V L )  
R H A L F l = S O R T ( P . / R H O R   * V l ( I H A L F ) )  
R H O E l = X K Z * R H A L F l   * A B S ( U E - U l ( l ) )  

17 V ( I ) = P M A X / U l ( I )  
13 DO 17 I = l t N P T S  

C A L L   F N T G R L ( N P T S . D P S I , V . V l )  
€ P S I  1 ) = R H O E l * R H O R / R H O i  ( 1  1 
DO 62 I = 2 , N P T S  

N P T S Z = N P T S l  
DD 18 I = l . N P T S Z  

1 8  V ( I ) = P M A X / R H O Z ( I ) / U 2 ( 1  
C A L L   F N T G R L ( N P T S 2 v O P S I  

19 R Z ( I ) = S O R T ( Z .  *v 1 

11 V ( I ) = ( U l ( I ) - U E ) / ( l . - U E  

DO 19 I = l r N P T S 2  

00 11 I = l r N P T S l  
1 

C A L L  F ~ ! T G R L ( N P T S ~ T D P S I T V T V ~ )  
00 7070 I = 1 1 N P T S  
Il=I 
I F ( V l ( I ) . G T . . 4 9 5 * P M A X )  GO T O  7071  

7 0 7 0  COF!TIN(JE 
7 0 7 1  P S I M l = P S I ( I l )  

46 1 

462 
4 6 3  

460 
C 

C 
C 

C 
C 
C 

SIJMI=O. 
DO 460 I = 2 r N P T S  
GO TO (4611462)  .KG0 
S U M = Y Z ( I - l )  
GO T O  463 
S U M = l . - Y Z ( I - l )  
I F I R Z ( I ) . G T . S D / Z . )  GO TO 460 
S U M I ~ S U M I + S U M * R H 0 2 ~ I - l ~ * R 2 ~ I - l ~ ~ ~ ~ R 2 ~ 1 ~ ~ R 2 ~ 1 - 1 ~ ~  
C U N T   I N U E  

CHECK  TO  SEE I F  C O N V E R G E N C E   C R I T E R I A   H A S   B E E N   M E T .  

I F ( A B S ( ( N O R M U 2 - N O R M l ! l ~ / N O R M U 2 ~ . G T ~ T O L )  GO  TO 2 0  

TEST=(U2(NPTS)-U2(NPTS-l))/OPSI 
I F ( A B S ( ( N O R M P 2 - N O R M P l ) / N C I R b l P 2 ) . G T . T O L )  GO TO 20 

I F ( T E S T . G T . . O O l * P M A X )  GO TO 70  
D E B U G   X 1  1 OX?  PMAX 
D E B U G   ( P S I ( I ) t I = l r N P T S 1 2 0 )  
I I E B U G   ( R 2   ( I ) T I = ~ T N P T S I ~ O )  
DEBUG (U2 ( I ) v I = ~ T N P T S T ~ O )  

C O N V E R G E N C E   C R I T E R I A  H A S   B E E N   M E T  
CHECK WHETHER OX C A N  B E   I N C R E A S E D  
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I111 IIIII IIIIII I I I 

C A L L   T I M L F T ( T I M 1 )  
C 
C I F  T H E   T I M E   R E M A I N I N G  ' IS  L E S S   T H A N  -1  M I N T  OUMP  FOR  RESTART. 
G 

C 
C 
C 

3333 

C 
C 

C 
60 

2 1  

C 
C 
C 

20 

2 2  

C 
C 

C 
30 
3 1  

9971  
9 9 7 2  

I F ( T I M 1 / 3 6 0 0 . . G T . . l )   G O   T O  3333 
XZ=K 

C A L L  B C O U M P ( P S I ( ~ ) T P S I ( N P T S ) )  
C A L L   B C O U M P ( X O ( l ) r X 0 ( 8 ) )  

C A L L   6 C O U M P ~ R O ~ l ) T R O l A ! P T S ) ~  
C A L L   B C D U M P ( U O ( l ) r U O ( N P T S ) )  
C A L L  ~ C O U M P ( R H D O ( ~ ) T R H O O ( I \ ) P T S ) )  
C A L L   B C O U M P ( Y O ( l ) T Y O ( N P T S ) )  
S T O P  

I F   I T E R  I S  L E S S   T H A N  3 1  I N C R E A S E  OX. 

I F ( I T E R . L T . 3 )   O X = 1 . 0 5 * D X  

X I = X I + O X * S U M I  
IF(DX.GT..4) OX=.4 

SHOULD WE P U N C H   O U T   A T   T H I S   X  

I F ( X l . G T . X P C H ( K ) )  GO TO 30 

X O = X l  

NORMUO=NORMUZ 
PMAXOD=PMAX 

NORMPO=NORMPZ 
R H A L F O = R H A L F l  

RHOEO=RHOEl  
P S I M O = P S I M l  

I J O I I ) = U Z ( I )  
R H O O ( I ) = R H O Z ( I )  
Y O ( I ) = Y Z ( I )  
R O ( I ) = R Z ( I )  
GO  TO 100 

00 2 1  I = ~ T N P T S  

NO CONVERGENCE 

MORMUl=NORMUZ 
NORMPl=NORMPP 
I T E R = I T E R + l  

1 1 1 ( 1 ) = 1 1 2 ( 1 )  
R H O l ( I ) = R H O Z ( I )  
Y l ( I ) = Y Z l I )  
R l ( I ) = R Z ( I )  
GO T O  50 

t m  zz I = ~ , N P T S  

PUNCH  OUTPUT 

00 31 I = l t N C O P Y  
C A L L   O U T P U T ( X P C H ( K ) )  
W R 1 T E ( 6 ~ 4 7 0 ) X 1  
DO 9971 I=J.TNPTS 
J = I  
I F ( R Z ( I ) . G E . S D / Z . )  G O  T O  9972 
T E S T = P S I l J )  
I F l J . E Q . N P T S ) T E S T = T E S T + R H O E ~ U E / 2 . ~ ~ S O ~ ~ 2 / 4 . - ~ 2 ( N P T S ) ~ ~ 2 )  

l / P M A X  
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W I < I T E ( . 6 r 4 7 9 )   R A T P  
R A T P = T E S T / P Z E R O  

W R I T E ( 6 , 4 8 2 )   S U M 1  

479 F O R M A T ( 1 O H K P S I - R A T I O t 2 X 1 G 1 L . 4 )  
482 F O R M A T ( 5 H   I ( X ) r 2 X ~ G 1 3 . 5  ) 

470 F U R M A T ( Z H K I I G ~ ~ . ~ )  
K = K + 1  
I F ( X ~  . L T . X P C H I K ) ) G O   T O  60 
GO  TO 1 

C M U S T   C H A N G E   P S I - I N F  
r 
L 

70 PMAX=.PMAX+Z. 
GO TO 101 
E N D  

b 1 B F T C   S O L V E  
L 

C 
C A R O U T I N E   T O   S O L V E  A P A R A B O L I C   E C J U A T I O N  B Y  THE  CRAVK 

C 
ALGORITHM.  

S U B R O U T I N E  S O L V E ( A ~ B ~ N ~ H M A X ~ H I N O R M H , D X I I ) P S I ~ H O )  

D I M E N S I O N  
REAL  NORMH 

N l = N - 1  

T = A / 4 . / D P S I  
S A ( l ) = O .  

T l = D P S I / D X  

1SC(503),WP(500)1Wk(500) 
8 ~ 5 0 0 ~ ~ H ~ 5 0 0 ~ ~ S 6 ~ 5 0 0 ~ 1 S D ( 5 0 0 ) r H O  

5 W M ( I ) = T * ( B ( I ) + B ( I - l ) )  
DO 5 I = 2 t N  

6 W P ( I ) = T * ( B ( I + l ) + B ( I ) )  
DO 6 I = l l N 1  

S B ( l ) = - ( W P ( l ) + T l / Z . )  
S C ( l ) = W P ( l )  
S D ~ 1 ~ ~ ~ W P ~ 1 ~ - T 1 / 2 . ~ * H O ~ l ~ - W P ~ l ~ ~ H O ~ 2 ~  
N=N- 1 

N I C H O L S O N S  

5 0 0 ) r S A ( 5 0 0 ) r  
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91 PSIP(I)=PSI(I)*PMO 
DO 91 I=lrNl 

DPSI=PSIP(Z)-PSIPIl) 
DO 51 I = l r N L  
1 H=I 
T=(UZ(I)-UE)/(UZ(l)-UE) 
IF(T,GT..5) GO T O  51 

GO TO  52 
51  CONTINUE 
52  RHl=RZ(IH) 
50 PMX=l. 

SQT=l. 
11 RHOEX=PEl  /SQT 

R H O X = S U B ( X O T P O ( ~ ) T X ~ T P ~ ( ~  

l R H O X = ( R H O X - R H O E ) / ( l . - R H O E  
IF(RHDE.NE.1.) 

U O X = S U B ( X O ~ U O ( ~ ) T X ~ T U Z ( ~ )  
URATX=(UUX-UEI/(l.-UE) 
T=O.  
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XbIU(Nl)=(YX(Nl)-YX 
N3=N1-1 

TAU(I)=PMX*(UX(I+l 
2 XMU(I)=(YX(I+l)-YX 

T=-RHOEX*PX(I)*UX( 

DO 2 I=2rN3 

110 3 I=l?Nl 
I 

TAU(I)=TAU(I)*T /UOX**2 

RHUEPX=PX(l)*EPS(l) 
RHX=RHl 

3 XMU(I)=XMU(I)*T/SC /YOX/UOX 

WR1TEl6~500) X X T U R A T X T Y R A T X I R H U X I E P S ( ~ ) I R H O E P X  9RHX 
IMOD=10 

K=l 
T€ST=PSIHF 
ISTRT=l 

N=I 
IF(PSIP(I).GT.TEST) GO T O  7 

32  DO 6 I=ISTRTrNl 

6 CONTINUE 
7 I*IOD=N/ I MOD 

IF(MOD.LT.1) MOD=1 

DO 4 I=ISTHTTNTMOD 
IFfK.EO.2) N=N+2 

RXXX=RX(I)/SQT 
IF(SM2.EQ.l.)XMU(I)=O. 
T5=YX( I )*PX( I )  

4 WRITE(6r501) P S I P ~ I ~ T R X X X T R O X ~ I ~ T U R A T ~ ~ ~ T Y R A ~ ~ I ~ T ? ~ ~ P ~ I ~ T ~ A U ~ I ~  
~TXMU(I)TEP(I)TRHOEP(I) T T5 
GO TO f 3 0 ~ 3 1 ) ~ K  

30 ISTRT=N+l 
TEST=P.MA 
IMOD=10 
K=2 
GO  TO  32 

D 2 = 4 . / R X ( 2 ) + * 2 * R H O E X * l U X 0 )  *RHOR 
T=(UOX-UE)/(l.-UE) 
IF(T.GT..99) Dl=Dl*PX(l) 
IF(T.GT..99) D2=D2+RHOR 

31  Dl= uox*(u2(1)-uo(1))/(xl-xo) *PX(l) 

WRITE(6r600) DlrDZ 
6 0 0  fORMAT(32HKCENTERLINE  COMPATIBILITY V A L U E S  2G15.5 ) 

601 FURMAT(7H  UMAX= G ~ ~ . S T ~ X T ~ H R H O - M A X =  G13.5 1 
WRITE(hr601)  UX(Nl)rPX(Nl) 

N3=l\ll-1 
CSTAR=O. 
IF(RHOE.EO.1.) GO T O  602 
DO 6 6  I=ltN3 
DR=RX(I+l)-RX(I) 

66 C S T A R = C S T A R + ( P X ( I ) - R H O E ) / ( l . - R H O E ) * D R  
602  CONTINUE 

WRITE(69520)  CSTAR 
520 FORMAT(3HKC*rG13.5) 

K=l 
RETURN 

500 FURMAT(19Hl A X I A L - L E N G T H ~ X T G ~ ~ . ~ I ~ X T ~ ~ H ( U O - U E ) / ( ~ - U E ) ~ G ~ ~ . ~ ~  
1 5 X ~ 1 4 H ( Y O - Y ~ ) / ( 1 - Y E ) r G 1 1 . 4 . 1 4 X 1 1 4 H ( P O - P ~ ~ / ~ ~ ~ ~ ~ ~ ~ G l l ~ 4  / 
213X96HEPS-0 T ~ ~ ~ ~ ~ ~ ~ ~ ~ T ~ H R H U E P S O T G ~ ~ ~ ~ T ~ ~ X T ~ H R ~ ~ / ~ T G ~ ~ ~ ~ T ~ ~ X T  

4 23F U-RATIO=(U-UE)/(UO-UE)/ 23H Y-RATIO=(Y-YE)/(YO-YE) 
3 / /  

/ 
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5 2 3 H   P - R A T I O = ( P - P E ) / ( P O - P E )  / 
6 ~ 2 6 H   T A U   N O R M A L I Z E D   B Y  1/U0*+2 / 2 5 H  M U   N O R H A L I Z E D   B Y   l / U O / Y O  / /  
5 4 H  P S I ~ ~ X ~ ~ H R , ~ O X ~ ~ H R / ( R - ~ / ~ ) ~ ~ X ~ ~ H U - R ~ T I O ~ ~ X T ~ H Y - R A T I O , ~ X ~  
69HP-RATIO  .2X .3HTAU.RX92HMU,9X*  
7 1 2 H E P S / ( E P S - O '  ~lX~17HRHOEPS/iRHOEPS-O) T 

2 2 X t 5 H R H O f Y  1 

r 
L 

T = ( S M 2 - 1 . ) + Y J  
PSI ( 1  )=O.  
NU=O. 

NP=O. 
00 1 1 = 2 7 N  

1 P S I ( I ) = P S I ( I - l ) + D P S I  
DO 8 I = ~ T N  
I F ( P S I ( I ) . L E . . 5 / P M O )  GO TO 4 

R H O (   I ) = R H O E  
GO TO 3 

4 U ( I ) = l .  
R H O (  I ) = l .  

U (  I ) = U E  

3 N U = N U + U ( I ) * + 2  
YO( I )=l. 
IF(T.NE.0.)  YO(I)=(YJ/RHO(I)+(l.+l./T)-YJ/T)/YJ 
N P = N P + Y O ( I ) + + Z  

N P = S Q R T ( N P )  
I\I(J=SQRT(IrlU) 

8 C O N T I N U E  

2 0  C O N T I N U E  
51  DCI 5 I = l T N  

5 V (  I )=Z. /RHO(  I ) / U t  I )  +PMO 
C A L L   F N T G R L ( N T D P S I T V T V ~ )  
DO 7 I = ~ T N  

7 R ( I ) = S Q R T ( V l ( I ) )  
RHFO=O. 
IF (M.EO.2 )   RETURN 

D X = 1  .E-2 
X=O 

GO T U  101 
100 C A L L   B C R E A D ( X ( l ) r X ( 9 ) )  

C A L L   B C R E A D ( P S I ( ~ ) T P S I ( N ) )  
C A L L   B C R E A D  
C A L L   B C R E A O  
C A L L   B C R E A D  
C A L L   B C R E A D  
P190=X ( 2  1 
N U = X (  3 )  
N P = X  ( 4  

K = X ( 6 )  
D X = X ( 5 )  
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Figure 1. - Model. 
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Calculate  in i t ia l   output 
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Move 

Using  Crank-Nicholson 
method,  solve for  u2 - Compute 
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and Ay - u1 and y1 (i. e., - Yo * Y 1  
and Y2 
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II u2 II 
II y2 II 

Iter = Iter + 1 
u2 - u1 
y2 - y1 
‘2 - ‘1 
p2 - P I  

Increase 
Ax 

Figure 2. - General flow diagram  for  numerical  solution.  Subscripts 0, 1, and 2 denote  values  at 
x - Ax, in i t ia l   va lues at x, and  computed  values  at x, respectively. 
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Axial  position, x 

(a)  Centerline  velocity  and  half  radius. 
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Normalized  radial  position, rlrU2 

(b) Velocity  profile. 

Figure 3. - Comparison of numer ica l   and  s imi lar i ty  
solutions.  Quiescent  coaxial  stream;  constant 
density. 
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(a)  Axial  variation. (b) Radial  variation. 

Figure 4. - Typical  variation of eddy viscosity.  Velocity  ratio, 30; density 
ratio,  0.170,  reference  density,  average of centerl ine  density  and 
coaxial-stream  density. 
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(a) Axial  variation. (b) Radial  variation. 

Figure 5. - Typical  variation of product of density  and  eddy  vis- 
cosity.  Velocity  ratio, 30; density  ratio, 0.170; reference 
density,  average of centerline  density  and  coaxial-stream 
density. 
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Radial  position, r 

(a) Velocity  ratio, 10. (b) Velocity  ratio, X). 
Figure 6. - Effect  of init ial  velocity  ratio  on  velocity  profi les. 

Density  ratio, 0.364; reference  density,  average of center- 
l ine  density  and  coaxial-stream  density. 

0 .4 .8 1.2 0 .4 .8 1.2 
Radial  position, r 

(a) Velocity ratio, 10. (b) Velocity  ratio, 30. 

Figure 7. - Effect of ini t ial   velocity  rat io  on mass fract ion  pro- 
files.  Density  ratio, 0.364; reference  density,  average  of 
centerline  density  and  coaxial-stream  density. 
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0 . 4  .8 1.2 0 .4  .8 1.2 
Radial  position, r 

(a)  Density  ratio, 0.364. (b) Density  ratio, 0.170. 

Figure 8. - Effect of init ial  density  ratio  on  velocity  profi les. 
Velocity  ratio, 30, reference  density,  average of center l ine 
density  and  coaxial-stream  density. 

I Axial  position, 1 

Radial  position, r 

(a1 Density  ratio, 0.364. (b) Density  ratio, 0.170. 

Figure 9. - Effect of init ial  density  ratio  on  mass  fraction  profi les. 
Velocity  ratio, 30; reference  density,  average of centerl ine  den- 
sity  and  coaxial-stream  density. 
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0 . 4  .8 1.2 
Radial 

0 . 4  . 8  1.2 
position, r 

(a)  Reference  density, (b) Reference  density, 
centerline  density.  coaxial-stream  density. 

F igure 10. - Effect of reference  density on velocity  profiles. 
Velocity  ratio, 20; density  ratio, 0.182. 
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(a) Reference  density, (b) Reference  density, 
centerline  density.  coaxial-stream  density. 

Figure 11. - Effect of reference  densi ty  on mass fraction  profiles. 
Velocity  ratio, 20; density  ratio, 0.182. 
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Figure 12. - Effect  of in i t ia l   veloci ty  rat io  on  d imen- 
sionless  mass of component 1. Density  ratio, 
0.364; reference  density,  average of center l ine 
density  and  coaxial-stream  density;  ratio of reac- 
to r   rad ius  to jet radius, 4. 

NASA-Langley, 1968 - 12 E-3786 
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Axial  position, x 

Figure 13. - Effect  of in i t ia l   densi ty  rat io  on 
dimensionless  mass of component 1. Ve- 
locity  ratio, 30, reference  density,  aver- 
age of centerl ine  density  and  coaxial- 
stream  density;  ratio of reactor  radius to 
jet radius, 4. 
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